ICES Database
ElectroMagnetic Field Literature
Search Engine
  

EMF Study
(Database last updated on Mar 27, 2024)

ID Number 2459
Study Type In Vitro
Model This study aimed to assess whether a short and repeated pulsed EMF (PEMF) could trigger adaptive responses against an oxidative insult in a human neuroblastoma SH-SY5Y cell line.
Details

AUTHORS' ABSTRACT: Osera et al. 2015 (IEEE #5924): Electromagnetic fields (EMFs) have been linked to increased risk of cancers and neurodegenerative diseases; however, EMFs can also elicit positive effects on biological systems, and redox status seems crucially involved in EMF biological effects. This study aimed to assess whether a short and repeated pulsed EMF (PEMF) could trigger adaptive responses against an oxidative insult in a neuronal cellular model. We found that a 40 min overall (four times a week, 10 min each) preexposure to PEMF did not affect major physiological parameters and led to a significant increase of Mn-dependent superoxide dismutase activity in the human neuroblastoma SH-SY5Y cell line. In addition, we found PEMF-pre-exposed cells exhibited decreased reactive oxygen species production following a 30 min H2O2 challenge, with respect to non pre-exposed cells. Our findings might provide new insights on the role played by short and repeated PEMF stimulations in the enhancement of cellular defenses against oxidative insults. Although studies in normal neuronal cells would be useful to further confirm our hypothesis, we suggest that specific PEMF treatments may have potential biological repercussions in diseases where oxidative stress is implicated.

Findings Effects
Status Completed With Publication
Principal Investigator University of Pavia, Pavia, Italy
Funding Agency Italian National Instit Insurance for Accidents at
Country ITALY
References
  • Osera, C et al. Bioelectromagnetics., (2015) 36:219-232
  • Santini, SJ et al. Oxid Med Cell Longev., (2018) Article ID 5076271:-(18 pages)
  • Comments

    Return